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From an “ideal” helical dipole field, where By = B0 cos kz, Bx = −B0 sin kz as
desired, the particle trajectory is given by
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where B0 is the central dipole field, Bρ is the magnetic rigidity of the particle, and
the repeat period of the helical field is L = 2π/|k|. For a complete helix (i.e., for
s = L), these results can be written in matrix form as:
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where

δ ≡ BL
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We see that a right-handed (k > 0) helical dipole which starts and ends with the
dipole field pointed vertically upward will act like a drift space of length L, but
produces a net vertical displacement downward by an amount δ. In contrast to a
“regular” dipole magnet error which can be thought of as producing a kink in the
slope of the particle trajectory at the source of the error, a “helical dipole” error will
introduce a step in the trajectory.

Consider a circular accelerator in which a single helical dipole magnet is suddenly
turned on. The horizontal closed orbit in the accelerator will remain unchanged, while
a vertical closed orbit error will be introduced. The closed orbit at the exit of the
helical dipole error will thus be found by solving(
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where γ◦ = (1 + α2
◦)/β◦ and β◦, α◦ are the Courant-Snyder parameters at the down-

stream end of the helical dipole. Transporting this closed solution around the accel-
erator, the vertical closed orbit is then distorted according to
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where the phase advance ψ is measured from the downstream end of the helical dipole.
The maximum orbit distortion will occur at a maximum amplitude function loca-

tion (β̂) where the phase advance happens to be tan(ψ − πν) = −1/α◦, and so the
maximum distortion can be estimated to be
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1 Strength/Length Errors

As an example, consider a 4 T, L = 2.4 m RHIC helical dipole magnet located in
the middle of a dispersion suppressor half cell where β◦ =30 m, α◦ = 1.5, and use
ν = 24.18 and β̂ = 50 m. If we are at 250 GeV energy, where Bρ = 800 T-m, then

ymax ≈ 10 mm
∆B

B

in the arcs. The rms orbit in the arcs (with the average being taken over both focusing

and defocusing quadrupoles) is then yrms ≈ ymax

√
〈β〉/2β̂ ≈ (5 mm)∆B/B.

To keep the imperfection resonance strength below εimp < 0.05, the rms vertical
closed orbit must be kept below yrms < 0.2 mm at 250 GeV.1 The field in a single
4 T Snake magnet would have to change by 4% to generate a vertical closed orbit
of this magnitude at high energy. The RHIC Snake system is aided by the fact that
helical dipoles are powered in pairs of opposite polarity. Thus, the relative values

1K. Brown, et al., “Conceptual Design for the Acceleration of Polarized Protons in RHIC,” May
1993, rev. Feb. 1995.
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of each pair of helical dipoles will need to be maintained below this level. This
places requirements on the power supply system and controls system, where pairs of
magnets must be regulated, as well as on the relative magnetic lengths of the pairs
of magnets. However, this level of accuracy is very easily achievable. In addition, the
dipole correction magnets around the accelerator will be used to smooth the orbit
after the Snakes are turned on.

In the case of the spin Rotators, pairs have the same polarity field, but opposite
helicity. So, in that regard, the Rotator pairs have the same relative accuracy require-
ments as the Snakes. However, the Rotator magnets have helical fields which begin
and end horizontally. Thus, setting errors in the Rotators will generate horizontal
orbit errors, which will not contribute to the imperfection resonance strengths.

2 Rotational Alignment Errors

For the Rotators, another source of orbit distortion would be more important to
control, namely rotational alignment of the helical magnets. If a Rotator magnet is
itself rotated about its longitudinal axis by an angle α, then the effect on the particle
trajectory is just

x
x′

y
y′


f

=


1 L 0 0
0 1 0 0
0 0 1 L
0 0 1 0



x
x′

y
y′


◦

+


δ cosα

0
δ sinα

0

 (11)

leading to a residual distortion in the vertical orbit as well as in the horizontal. So
here, rotational alignment errors will generate vertical orbit distortions which can
contribute to the imperfection resonances. In addition, the Rotators would most
likely be adiabatically turned on after the final collision energy is reached, so that
control of the vertical orbit during this operation will be important.

If the Rotators have rms relative rotation angles of αrms within a group of N = 4
magnets, then the rms closed orbit in the arcs due to this group will be approximately
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In the rotators, all magnets run at about 3 T and so δ = 3 mm at 250 GeV. With
〈β〉γ◦ ≈ 1 + 〈α◦〉2, we find that a vertical rms orbit distortion of 0.2 mm corresponds
to an rms rotation angle of α = 28 mr. If we have four sets of Rotators which happen
to affect the orbit coherently, then that says the relative rotational alignment within
each set of four magnets should be roughly 7 mr. Over a magnet yoke diameter of
14 in., this corresponds to a transverse alignment error of 7 in. × 7 mr = 50 mil, or
≈1 mm which is easily accomodated.
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3 Integrated Pitch Errors

Lastly, we consider the effect of a magnet which is built where the value of k × L is
not equal to 2π. Suppose that in reality, kL = 2π + 2ε. We assume that if this effect
were measured after the construction of the magnet, one would attempt to install the
magnet with its field oriented by −ε at the entrance and +ε at the exit of the magnet.
For a helical dipole with the field oriented vertically plus an angle α at the entrance,
the solution for the particle trajectory is
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and so if α = −ε and kL = 2π + 2ε, then
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Therefore, at the exit of the magnet the trajectory is given an “additional” step of
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to first order in ε. Here, δ is the ideal value, if kL were indeed equal to 2π.
A set of Snake magnets would generate a vertical closed orbit in a similar way as

did the Rotators in the example above. The two 4 Tesla magnets would dominate,
and so the 28 mr requirement found previously for one set of misaligned Rotator

magnets becomes for this case 2ε/π = (3 T/4 T)×
√

4/2×28 mr = 30 mr, or 2ε =
90 mr. For two sets of Snake magnets adding coherently, this becomes a tolerance of
about kL = 2π±45 mr, or ±2.5◦.

Rotator magnets, on the other hand, would affect the vertical closed orbit in a
more complicated way. In this case, both the slope and position of the trajectory are
changed. We must then solve the closed orbit equation again:(
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which, after a little algebra, reduces to
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Element ∆(BL)/BL α ∆(kL) = 2ε
Alone: Snake Magnet 4% — 180 mr

Rotator Magnet — 55 mr 8 mr
Unit: Snake 2% — 90 mr

Rotator — 28 mr 4 mr
Ring: 2 Snakes 1% — 45 mr

4 Rotators — 7 mr 1 mr

Table 1: Requirements for field strength/length, rotation angle, and total pitch angle
to maintain 0.2 mm rms orbit distortion at 250 GeV.

The rms orbit distortion in the arcs due to N = 4 rotator magnets will then be
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assuming β◦ ≈ 〈β〉. Putting in RHIC parameters again, this says that (2ε)rms < 4 mr
(0.2◦!) to maintain an orbit distortion less than 0.2 mm. With 4 sets of rotators in
each ring, this tells us that careful orbit smoothing will need to be performed during
the adiabatic turn-on of the rotator systems.

A summary of the effects discussed above is provided in Table 1. The requirements
for producing an rms orbit distortion of 0.2 mm at 250 GeV are tabulated.

As with all of these specifications, there is a trade-off between the specified toler-
ances of the magnet design and the level at which the effects can be corrected with the
accelerator’s correction systems. Simulations of the operational procedures should be
performed using realistic elements in the detailed RHIC lattice prior to freezing the
magnet specifications.
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